Quantum Surface of Section Method: Eigenstates and Unitary Quantum Poincaré Evolution
نویسنده
چکیده
The unitary representation of exact quantum Poincaré mapping is constructed. It is equivalent to the compact representation [19, 22, 23] in a sense that it yields equivalent quantization condition with important advantage over the compact version: since it preserves the probability it can be literally interpreted as the quantum Poincaré mapping which generates quantum time evolution at fixed energy between two successive crossings with surface of section (SOS). SOS coherent state representation (SOS Husimi distribution) of arbitrary (either stationary or evolving) quantum SOS state (vector from the Hilbert space over the configurational SOS) is introduced. Dynamical properties of SOS states can be quantitatively studied in terms of the so called localization areas which are defined through information entropies of their SOS coherent state representations. In the second part of the paper I report on results of extensive numerical application of quantum SOS method in a generic but simple 2-dim Hamiltonian system, namely semiseparable oscillator. I have calculated the stretch of 13 500 consecutive eigenstates with the largest sequential quantum number around 18 million and obtained the following results: (i) the validity of the semiclassical Berry-Robnik formula for level spacing statistics was confirmed and using the concept of localization area the states were quantitatively classified as regular or chaotic, (ii) the classical and quantum Poincaré evolution were performed and compared, and expected agreement was found, (iii) I studied few examples of wavefunctions and particularly, SOS coherent state representation of regular and chaotic eigenstates and analyzed statistical properties of their zeros which were shown on the chaotic component of 2-dim SOS to be uniformly distributed with the cubic repulsion between nearest neighbours.
منابع مشابه
Special Section: Quantum Measurements
Unitary evolution and projective measurement are fundamental axioms of quantum mechanics. Even though projective measurement yields one of the eigenstates of the measured operator as the outcome, there is no theory that predicts which eigenstate will be observed in which experimental run. There exists only an ensemble description, which predicts probabilities of various outcomes over many exper...
متن کاملEigenpath traversal by phase randomization
A computation in adiabatic quantum computing is implemented by traversing a path of nondegenerate eigenstates of a continuous family of Hamiltonians. We introduce a method that traverses a discretized form of the path: At each step we apply the instantaneous Hamiltonian for a random time. The resulting decoherence approximates a projective measurement onto the desired eigenstate, achieving a ve...
متن کاملEffects of on-center impurity on energy levels of low-lying states in concentric double quantum rings
In this paper, the electronic eigenstates and energy spectra of single and two-interacting electrons confined in a concentric double quantum rings with a perpendicular magnetic field in the presence of on-center donor and acceptor impurities are calculated using the exact diagonalization method. For a single electron case, the binding energy of on-center donor and acceptor impurities ar...
متن کاملNumerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N / GaN Multiple Quantum Well Solar Cells
The present study was conducted to investigate current density of0.3 0.7 Al Ga N/ GaN multiple quantum well solar cell (MQWSC) under hydrostaticpressure. The effects of hydrostatic pressure were taken into account to measureparameters of 0.3 0.7 Al Ga N/ GaN MQWSC, such as interband transition energy, electronholewave functions, absorption coefficient, and dielectric con...
متن کاملParticle creation and non-adiabatic transitions in quantum cosmology
The aim of this paper is to compute transitions amplitudes in quantum cosmology, and in particular pair creation amplitudes and radiative transitions. To this end, we apply a double adiabatic development to the solutions of the Wheeler-DeWitt equation restricted to mini-superspace wherein gravity is described by the scale factor a. The first development consists in working with instantaneous ei...
متن کامل